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Scattering at Rectangular-to-Rectangular Waveguide
Junctions
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Abstract — This short paper presents formally exact solutions with con-
vergent numerical results to the problems of scattering from a rectang-
ular-to-rectangular waveguide junction and from a thick diaphragm with
rectangular aperture in rectangular waveguide. The method uses normal
mode expansions of the waveguide fields and the principle of conservation
of complex power. A variety of configurations are considered and numeri-
cal convergence is confirmed by comparison with experiment.

I. INTRODUCTION

For several decades the problem of electromagnetic scattering
at the junction of two uniform cylindrical waveguides has at-
tracted the attention of numerous authors. A survey of pertinent
analytical and numerical techniques can be found in [1] and in
texts by Mittra and Lee [2] and Lewin [3]. Transverse and
longitudinal waveguide junctions may be considered as building
blocks for more complex configurations such as filters, direc-
tional couplers, and periodic structures; consequently, in addition
to their theoretical significance as boundary value problems, they
are the key factors in the solution of many practical problems in
microwave engineering.

Using normal TE- and TM-mode expansions for the waveguide
fields, together with the principle of conservation of complex
power [1}, [4], this paper focuses on the junction of two rectangu-
lar waveguides with a common center axis but with otherwise
arbitrary cross sections, and deduces its scattering matrix S. The
thick diaphragm with a centered rectangular hole can be regarded
as a cascaded pair of such junctions. The overall scattering matrix
S, of such a structure is given in terms of generalized scattering
matrix theory ([2], pp. 207-217) and the scattering matrices of
the two junctions. The analysis, therefore, is quite different from
the mode matching method of Luebbers and Munk [5], which
uses even and odd excitations and, therefore, appears to be
limited to the case where the waveguides on either side of the
diaphragm are identical; moreover, an incomplete set of modes
(no E,) is postulated.

Numerical results are presented in Section III for a variety of
junctions and diaphragms, while in Section IV a study of conver-
gence reveals that quite good results are obtainable when about
ten modes (TE plus TM) are used in the smaller of the two
waveguides. Section V presents an experimental confirmation of
the numerical results.

II. METHOD OF ANALYSIS

A. Rectangular-to-Rectangular Waveguide Junction

Fig. 1 illustrates a junction of two rectangular waveguides. The
amplitude of the mnth scattered mode’s electric field in wave-
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Fig 1. Junction of two rectangular wavegwdes.

guide i (i =1,2) due to a unit amplitude pgth mode in waveguide
Jj (j=12) is by definition the (mmn, pg) element of the field
scattering matrix S, . Moreover, for the smaller guide (guide 2)

Y,)T, (1)
where 7T, (i =1,2) is a diagonal matrix which defines the equiva-
lent voltage column vector ¥, of guide i in terms of the E-field
mode amplitude vector a, of the same guide

=Ta, 2

Yy, is the characteristic admittance matrix of guide 2, and Y, is
the input admittance matrix of the junction as seen from guide 2.
The principle of conservation of complex power can be used [1],
[4] to show that

_ —1
Sy =T, (Yp+Y¥,) (Y-

Y, =21, YHP{HT, ' ?3)

where P, is a diagonal matrix whose mnth diagonal element is the
complex power carried by the unit amplitude mnth mode of
guide 1. The elements of H are given by [4]

//‘; El,mn' E2,pqda
Hmn,pq=yv(;k1,mn . (4)
14 1,mn
where €, .. (i=1,2) is the transverse component of the mnth
mode electric field of guide i at z =0, and p, ,,, is the complex
power carried by the same mode. Integration in (4) is over the
junction’s aperture S,.
The remaining submatrices of the scattering matrix § can be
obtained in terms of .S, [1], [4]

S,=H(I+S,) (5)
=05 'Sh0, (6)
S, =HS, — 1. (7)

Q, for i=1,2 is a diagonal matrix whose mnth diagonal element
is €, ,unX h, wn-da with the integration taken over the cross-
sectional area of waveguide i; in lossless cases Q, = P*. I is the
identity matrix.

Let the modes in each waveguide be divided into TE and TM
modes and sequentially ordered. The matrix H can then be
subdivided into four submatrices

[t

where A and D give the cross coupling between the TE modes
and TM modes in each waveguide and B(C) indicates the cross
coupling between the TM(TE) modes in the smaller guide and the
TE(TM) modes in the larger. Using the letters & and e to indicate
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TE and TM modes respectiveiy, the various elements of the
diagonal matrices Y;;, P,, Q, and T,, for.rectangular waveguides,
are

Yoomn = Yy Vo= 2%y, i=12 (9)
jkO i,mn
a b] ,, e a b *
pill,mrl=2€l € Y;)hl,mn Pl,mn=l—8LY3’l,mn (10)
m-n
Qih,mn=P1h,*mn Qie,mn=pi*mn’ i=1’2 (11)

B /azbz~ e - /azbz _L,m=0
T2,mn € T2,mn 4 €m 2’ m= 0

where mn indicates the mnth mode in the waveguide, k, is the
wavenumber and

2 2
2 _ (M7 PTY g2
Yi,mn (,a' ) +( b ) kO'

1 i

(12)

(13)

The (mn, pg)th elements of the four submatrices of H (see (4)
and (8)), are conveniently represented as the elements of the
following 2 X2 matrix

H ="Amn,pq an,pq
P Cmn,pq Dmn,pq
ng np
_ bb, ba, I(_’ﬁili)
mq mp a,’a,’ b’ b,
Laxbz a4,
M mq
a,a, ab, n g m .IL) (14)
__mp nq b’by, a,’ ay)
ba, bib,
where
I(ﬂ,li,bl’i)=__“l’i_c(ﬂ,£)s(l,i)
a’ay’ b’b, alblkcl,mnkc}!,pq a, a, bl b2
(15)
with
| sin[g(al_az)]
P14 (-"*7] : :
al ma 2 2
mTy (27
( ay ) (‘12)
a; 4 a, a,
a,
€,
m_P
al_a2
(16)
by (1 _q_) LA
S(—n— l)_ nb, \'b,’ by}’ b, b, am
bi’by) ) b n_q
2’ b, b,
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Fig. 2. Axial and lateral sectional views of a thick diaphragm with rectangu-
lar aperture.

Moreover, in (15)

mn\® (nw)? 7\ 7\?

e (22 (5 (2] 0
It is interesting to note that by direct substitution of (15), (16),
and (17) into (14) the submatrix B vanishes.

The use of (8)—(18) in (3) and (1) yields the desired scattering
matrix §,, from which the three other scattering matrices are
obtainable through (5), (6), and (7).

B.. Diaphragm with Rectangular Aperture

Fig. 2 illustrates sectional views of the thick diaphragm. Apply-
ing the generalized scattering matrix technique ([2], pp. 207-217),
which is valid for thin ‘as well as thick diaphragms, one can
obtain '

(19)

(20)
where the superscript d refers to the diaphragm and L ‘is the
diagonal transmission matrix of guide 2 with ~

S =8, +8,LS,, (I - LS,LS,,) 1LS21
-1
s3dl = SIZ(I_ LS22L522) LS;,

Lmn,mn=exp(_, YZ‘mnt>‘ (21)

The subscripts on the S;; matrices indicate the scattering into the
ith guide due to incident. fields in the jth' with i, j=1,2,3.
Accordingly, (19) gives the back scattering matrix for incidence
from guide 1, and (20) is the forward scattering matrix- for
incidence from the same waveguide.

III. NUMERICAL RESULTS’

The magnitude and phase of the reflection coefficient p and
transmission coefficient =, with incidence from the larger guide,
are plotted in Fig. 3 as functions of frequency. These coefficients
are the elements of § corresponding to a TE, incident field and
TE,, scattered fields. Since the characteristic admittance matrix
elements are given by the mode admittances (see (9)), it turns out
that .S is nonsymmetric; moreover, as can be seen in Fig. 3, the
transmission coefficient magnitude is (in this particular case)
greater than unity, a result of the choice of admittance matrix
elements. Note that the reflection coefficient magnitude in Fig. 3
is unity below 10.5 GHz since the smaller guide’s TE;, mode is
cut off below this frequency. Just above 10.5- GHz a sharp
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Fig. 3. Reflection coefficient p and transmission coefficient 7 as functions of

frequency with incidence from the larger waveguide. Dimensions of wave-
guides (in centimeters) are a, = 2.285, by =1.005, a, =1 428, b, = 0.650.
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Fig 4. Reflection coefficient p and transnussion coefficient t as functions of
the step size d; 1n wavelengths for a thin diaphragm (¢ = 0 01A). Waveguide
dimensions are a; = 0.85\, b, = 0.40A, aperture height is b, = 0.225A.

decrease of |p| signals the start of real power flow into guide 2.
Figs. 4 and 3, for the cases of two different thicknesses of a
diaphragm with a centered rectangular iris, give the reflection
coefficient p and transmission coefficient r as functions of the
step size in the x direction while the step size along y is held
constant. With a TE, incident mode field, the steps along x and
y exhibit inductive and capacitive effects, respectively. When
their reactances cancel one another, |p| vanishes and the reflec-
tion coefficient angle becomes zero in its transition from negative
to positive values. Due to the coupling between the two sides of
the diaphragm, the location of the resonance point also depends
on the thickness (compare Figs. 4 and S5). The thicker diaphragm
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Fig. 5. Reflection coefficient p and transmission 7 as functions of the step
size d, in wavelengths for a thick diaphragm (¢ = 0.25)). Waveguide dimen-
sions are a; = 0.85A, b, = 0.40A, aperture height is b, = 0.225A.
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Fig. 6. Reflection coefficient p and transmussion coefficient r as functions of
frequency for a thick diaphragm (7= 0.25 cm). Waveguide dimensions (in
centimeters) are a; = 2.285, by =1.005, aperture dimensions are a, =1.800,
by = 0.660.

introduces a higher selectivity due to the higher stored reactive
energy. The standard formula for a resonant rectangular iris ({6,
p. 170)) gives a value of step size d;, which is 13 percent lower
than that indicated by Fig. 4; for the thick iris, the formula,
which is independent of thickness, is 27 percent lower than the
value of 4, = 0.15A given in Fig. 5. This discrepancy is, we feel,
due to the simplicity of the standard formula which ignores the
effects of all higher order modes and simply equates characteris-
tic impedances of the TE,, modes in waveguides of cross sections
a; X b, and a, X b,, respectively.

The variation of the reflection coefficient p as a function of
frequency is given in Fig. 6. The inductance and capacitance
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Fig 7. Diaphragms with rectangular apertures used in the experiments. Di-
mensions are 1n centimeters.
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Fig. 8 Convergence of the TE,, reflection coefficient p for (a) thin and (b)

thick diaphragms. Waveguide dimensions (in centimeters) are a, = 2.285,
b, =1.005, f=100 GHz. (a) t=0.025, a,=1.14, b, =0.63; (b) t=0.39,
a; =119, b, =0.675.

TABLE I
HiGHEST ORDER TE AND TM MODES CORRESPONDING TO EACH
POINT OF Fi1G. 8

POINT NO | MATRIX SIZE | HIGHEST TE | HIGHEST T™M

MODE MODE

' 2 CTE ™.,

2 5 TE,, ™),

3 8 TE,, My,

4 10 TEse ™,

5 13 TEsq T™3,

6 17 TE ¢ ™,

7 20 TE ¢ TM3g

8 24 TEqsg TMgg
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Fig. 9. Experimental and theoretical reflection coefficients as functions of
frequency for thick diaphragm; experimental results are indicated by circles.
Geometry is shown in Fig. 7(b).

introduced by the steps along x and y are frequency dependent,
resonance occurring when their reactances cancel one another.

IV. CONVERGENCE

To examine the overall convergence of the technique, the
magnitude and phase of the reflection coefficient p for the
diaphragms shown in Fig. 7 are plotted in Fig. 8 as a function of
the size of the matrix inverted in the computer program. The
incident mode is TE ;. A list of the highest order smaller wave-
guide TE and TM modes corresponding to each point of the
graphs is given in Table I.

V. EXPERIMENT

The magnitude and phase of the reflection coefficient p, i.e., |p]
and arg {p), for the diaphragm shown in Fig. 7(b), were measured
as functions of frequency. The results are superposed on the
computed graphs in Fig. 9. It is seen that the results generated by
the 10X 10 matrix' inverted in the program are in good agree-
ment with the measurements.

V1. CONCLUSIONS

‘Convergent results obtained in this paper for thick diaphragms
in rectangular waveguide indicate the potential of the conserva-
tion of complex power technique. However, the analysis has only
been applied to lossless structures. It will be of considerable
interest to consider, say, the case of a resonant cavity formed by
two diaphragms with rectangular apertures, and to take into
account the finite conductivity of both the diaphragms and the
waveguide walls.

Other configurations, such as the rectangular—circular wave-
guide junction and the coaxial-circular waveguide junction, are
being investigated. ‘
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"The highest order smaller waveguide TE and TM modes are TEs, and
TM,;. .



