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Abstract —This short paper presents formally exact sohrtions with cou-

vergent numerical results to the problems of scattering from a rectang-

ular-to-rectangular wavegnide jnnction and from a thick diaphragm with

rectangular aperture in rectangular wavegnide. The method uses normal

mode expansions of the waveguide fields and the principieof conservation

of complex power. A variety of configurations are considered and numeri-

cal convergence is confirmed by comparison with experiment.

I. INTRODUCTION

For several decades the problem of electromagnetic scattering

at the Junction of two uniform cylindrical waveguides has at-

tracted the attention of numerous authors. A survey of pertinent

analytical and numericaJ techniques can be found in [1] and in

texts by Mittra and Lee [2] and Lewin [3]. Transverse and

longitudinal waveguide Junctions may be considered as building

blocks for more complex configurations such as filters, direc-

tional couplers, and periodic structures; consequently, in addition

to their theoretical significance as boundary value problems, they

are the key factors in the solution of many practical problems in

microwave engineering.

Using normal TE- and TM-mode expansions for the waveguide

fields, together with the principle of conservation of complex

power [1], [4], this paper focuses on the junction of two rectangu-

lar waveguides with a common center axis but with otherwise

arbitrary cross sections, and deduces its scattering matrix S. The

thick diaphragm with a centered rectangular hole can be regarded

as a cascaded pair of such junctions. The overall scattering matrix

Sd of such a structure is given in terms of generalized scattering

matrix theory ([2], pp. 207–2 17) and the scattering matrices of

the two junctions. The analysis, therefore, is quite different from

the mode matching method of Luebbers and Munk [5], which

uses even and odd excitations and, therefore, appears to be

limited to the case where the waveguides on either side of the

diaphragm are identical; moreover, an incomplete set of modes

(no EY) is postulated.

Numericaf results are presented in Section III for a variety of

junctions and diaphragms, while in Section IV a study of conver-

gence reveals that quite good results are obtainable when about

ten modes (TE plus TM) are used in the smaller of the two

waveguides. Section V presents an expenmentaJ confirmation of

the numerical results.

II. hlETHOD OF ANALYSIS

A. Rectangular-to-Rectangular Waveguide Junction

Fig. 1 illustrates a Junction of two rectangular waveguides. The

amplitude of the mn th scattered mode’s electric field in wave-
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Fig 1. Junction of two rectangular wavegmdes

guide i (i= 1, 2) due to a unit amplitude pqth mode in waveguide

~ (~= 1,2) k by definition the ( mn, pq) element of the field
scattering matrix S,,. Moreover, for the smaller guide (guide 2)

S22=Z’-’(Y02 +Y2(Y02YY2)T2)T2 (1)

where 2’, (i = 1,2) is a diagonal matrix which defines the equiva-

lent voltage column vector ~ of guide i in terms of the E-field

mode amplitude vector a, of the same guide

~= T,az. (2)

Y02 is the characteristic admittance matrix of guide 2, and Yz is

the input admittance matrix of the junction as seen from guide 2.

The principle of conservation of complex power can be used [1],

[4] to show that

Y1 = 2 T2- ‘tH fP{HT2- ‘ (3)

where PI is a diagonal matrix whose mn th diagonal element is the

complex power carried by the unit amplitude mn th mode of

guid~ 1. ~he elements of fi are given by ~4]

// ~l,m~”e2,P~ da

H
s.

mn, pq=y;l, mn
Pl, m.

where ;,, ~ ~ (i= 1,2) is the transverse component

(4)

of the mn th

mode electric field of guide i at z = O, and p,, ~ ~ is the complex

power carried by the same mode. Integration in (4) is over the

junction’s aperture S..

The remaining submatrices of the scattering matrix S can be

obtained in terms of S22 [1], [4]

S,2=H(I+ S,,) (5)

%1 = Q2-’s&Qi (6)

S,l =HS21 – I. (7)

Q, for i = 1, 2+is a ~agonal matrix whose mn th diagonal element

is J/Zl, ~ ~ x h,, ~.. da with the integration taken over the cross-

sectionaf area of waveguide i; in lossless cases Q, = P,*. I is the

identity matrix.

Let the modes in each waveguide be divided into TE and TM

modes and sequentially ordered. The matrix H can then be

subdivided into four sub matrices

[1H=AB

CD
(8)

where A and D give the cross couplhg between the TE modes

and TM modes in each waveguide and B(C) indicates the cross

coupling between the TM(TE) modes in the smaller guide and the

TE(TM) modes in the larger. Using the letters h and e to indicate
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TE and TM modes respectively, the various elements of the

diagonal matrices YOi, PI, Qi and Tz, for. rectangular waveguides,

are

‘$, m.
Yi, mn jko

=—YO %,.n=~yo) i=l,2
jko

(9)

albl albl ~.
–—Yf,”.n –—P!, rn. – 2cMcn , Pf, mn – g Yol, mn (lo)

where mn indicates the mn th mode in the waveguide, k. is the

wavenumber and

y~mn=(%)’+(?)’-k’(13)

The ( mn, pq)th elements of the four submatnces of H (see (4)

and (8)), are conveniently represented as the elements of the

following 2 X 2 matrix

[

A mn, pq B
H=

mn, pq

mn, pq c mn, pq D mn, pq 1

[1
Jg_. J?P_
b1b2 b1a2

.
mq mp (

[!?!LLI
al ‘ a2 ‘bl’bz )

a1b2 a1a2

[1

w __ mq

a1a2 a1b2
+

np E ( )
I $,$:,: (14)

b1a2 blbz

where

( )r~,~?~.
al a2 ‘b,’b2 4n2k C(:y$)%%)alblkcl,mn a,pq

(15)

with

1:[1+(-1)”+

()~zz= Im P—#—
al ‘ az a, a2

al
—
cm ‘

m P—=—
at a2

[
sin ‘(al –a2) 1

‘](;i”(%)’‘

(16)

(17)
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Fig, 2, Axial and lateral sectionaJ views of a thick diaphragm with rectangu-

lar aperture.

Moreover, in (15)

~’~=(%)’+(%)’ k’zpq=(%)’+(fr ’18)

It is interesting to note fiat by direct substitution of (15), (16),

and (17) into (14) tie submatrix B vanishes.

The use of (8)-(18) in (3) and (1) yields the desired scattering

matrix S22 from which the three other scattering matrices are

obtainable through (5), (6), and (7).

B. Diaphragm with Rectangular Aperture

Fig. 2 illustrates sectional views of the thick diaphragm. Apply-

ing the generalized scattering matrix technique ([2], pp. 207–2 17),

which is valid for thin as well as thick diaphragms, one can

obtain

S:l = S1 , + S,2LS22 (Z – LS22LS22 ) - 1LS21 (19)

s; = S,2 (I– LS22LS22)-’LS2, (20)

where the superscript d refers to the diaphragm and L is the

diagonal transmission matrix of guide 2 with

L mn, mn = exp{– y2, mHt}. (21)

The subscripts on the Sij matrices indicate the scattering into the

ith guide due to incident fields in the jth’ with i, j = 1,2,3.

Accordingly, (19) gives the back scattering matrix for incidence

from guide 1, and (20) is the forward scattering matrix for

incidence from the same waveguide.

III. NU~RICAL RESULTS

The magnitude and phase of the reflection coefficient p and

transmission coefficient r, with incidence from the larger guide,

are plotted in Fig. 3 as functions of frequency. These coefficients

are the elements of S corresponding to a TE,0 incident field and

TEIO scattered fields. Since the characteristic admittance matrix

elements are given by the mode admittances (see (9)), it turns out

that S is nonsymmetric; moreover, as can be seen in Fig. 3, the

transmission coefficient magnitude is (in this particular case)

greater than unity, a result of the choice of admittance matrix

elements. Note that the reflection coefficient magnitude in Fig. 3

is unity below 10.5 GHz s@ce the smaller guide’s TE,0 mode is

cut off below this frequency. Just above 10.5 GHz a sharp
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Fig. 3. Reflection coefficient p nnd transmission coefficient ~ as functions of
frequency with incidence from the larger waveguide. Dimensions of wave-
guldes (m centimeters) are al = 2.285, b,= 1.005, az = I 428, bz = 0.650.
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Flg 4. Reflection coefficient p and transrmsslon coefficient r as functions of
the step size d, m wavelengths for a thm diaphragm (t = O01A). Wavegulde
dimensions are al= 0.85A, b] = 0.40X, aperture he@t is b2 = 0.225A.

decrease of 1p I signals the start of real power flow into guide 2.

Figs. 4 and 5, for the cases of two different thicknesses of a

diaphragm with a centered rectangular iris, give the reflection

coefficient p and transmission coefficient r as functions of the

step size in the x direction while the step size along y is held

constant. With a TE,0 incident mode field, the steps along x and

y exhibit inductive and capacitive effects, respectively. When

their reactance cancel one another, 1p1vanishes and the reflec-

tion coefficient angle becomes zero in its transition from negative

to positive values. Due to the coupling between the two sides of

the diaphragm, the location of the resonance point also depends

on the thickness (compare Figs. 4 and 5). The thicker diaphragm
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Fig. 5. Reflection coefficient p and transmission T as functions of the step
&e dl in wavelengths for a thick diaphragm (t = 0.25X). Waveguide dimen-
sions are al = 0.85A, b, = 0.40X, aperture height is bz = 0.225A.
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Fig. 6. ReflectIon coefficient p and transnussion coefficient T as functions of
frequency for a thick diaphragm (t= 0.25 cm). Waveguide dimensions (in
centimeters) are a, = 2.285, b, = 1.005, aperture dimensions are az = 1.800,
bz = 0.660.

introduces a higher selectivity due to the higher stored reactive

energy. The standard formula for a resonant rectangular ins ([6,

p. 170]) gives a value of step size d, which is 13 percent lower

than that indicated by Fig. 4; for the thick iris, the formula,

which is independent of thickness, is 27 percent lower than the

value of d, = O.15A given in Fig. 5. This discrepancy is, we feel,

due to the simplicity of the standard formula which ignores the

effects of all higher order modes and simply equates characteris-

tic impedances of the TEIO modes in waveguides of cross sections

a, X b, and a2 X b2, respectively.

The variation of the reflection coefficient p as a function of

frequency is given in Fig. 6. The inductance and capacitance
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Fig 7. Diaphragms with rectangular apertures used in the experiments. Di-
mensions are m centimeters.
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Fig. 8 Convergence of the TE,O reflection coefflc,ent p for (a) thm and (b)
thick diaphragms. Waveguide dimensions (in centimeters) are al = 2.285,
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TABLE I

HIGHEST ORDER TE AND TM MODES CORRESPONDING TO EACH
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Fig, 9, Expenmentd and theoretical reflection coefficients as functions of
frequency for tluck diaphragm; experimental results are indicated by circles.
Geometry is shown in Fig. 7(b).

introduced by the steps along x and y are frequency dependent,

resonance occurring when their reactance cancel one another.

IV. CONVERGENCE

To examine the overall convergence of the technique, the

magnitude and phase of the reflection coefficient p for the

diaphragms shown in Fig. 7 are plotted in Fig. 8 as a function of

the size of the matrix inverted in the computer program. The

incident mode is TE ,.. A list of the highest order smaller wave-

guide TE and TM modes corresponding to each point of the

graphs is given in Table I.

V. EXPERfMJ3NT

The magnitude and phase of the reflection coefficient p, i.e., 1PI

and arg { p }, for the diaphragm shown in Fig. 7(b), were measured

as functions of frequency. The results are superposed on the

computed graphs in Fig. 9. It is seen that the results generated by

the 10X 10 matrixl inverted in the program are in good agree-

ment with the measurements.

VI. CONCLUSIONS

‘Convergent results obtained in this paper for thick diaphragms

in rectangular waveguide indicate the potential of the conserva-

tion of complex power technique. However, the analysis has only

been applied to lossless structures. It will be of considerable

interest to consider, say, the case of a resonant cavity formed by

two diaphragms with rectangular apertures, and to take into

account the finite conductivity of both the diaphragms and the

waveguide walls.

Other configurations, such as the rectangular-circular wave-

guide junction and the coaxial-circular waveguide junction, are

being investigated,
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